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 ETA INVARIANTS AND REGULARIZED DETERMINANTS

 FOR ODD DIMENSIONAL HYPERBOLIC MANIFOLDS

 WITH CUSPS

 By Jinsung Park

 Abstract. We study eta invariants of Dirac operators and regularized determinants of Dirac Lapla-
 cians over hyperbolic manifolds with cusps and their relations with Selberg zeta functions. Using
 the Selberg trace formula and a detailed analysis of the unipotent orbital integral, we show that the
 eta and zeta functions defined by the relative traces are regular at the origin so that we can define
 the eta invariant and the regularized determinant. We also show that the Selberg zeta function of
 odd type has a meromorphic extension over C, prove a relation of the eta invariant and a certain
 value of the Selberg zeta function of odd type, and derive a corresponding functional equation.
 These results generalize the earlier work of John Millson to hyperbolic manifolds with cusps. We
 also prove that the Selberg zeta function of even type has a meromorphic extension over C, relate
 it to the regularized determinant, and obtain a corresponding functional equation.

 1. Introduction. In the seminal paper [12], Millson derived a relation of
 the eta invariant of the odd signature operator and a certain value of Selberg zeta
 function of odd type for compact hyperbolic manifolds of dimension {An - 1).
 To prove this, Millson used the Selberg trace formula, which relates the spectral
 data to the geometric data, applied to a test function defined by the odd heat
 kernel of the odd signature operator. In [7], the corresponding work was done for
 the analytic torsion and the Ruelle zeta function for odd dimensional hyperbolic
 manifolds. These results have been generalized to the case of compact locally
 symmetric spaces of higher rank in [13], [14].

 It would be an interesting problem to extend the aforementioned results
 to noncompact locally symmetric spaces with finite volumes. However, we en-
 counter several serious difficulties when we discuss the extension of those results

 to noncompact locally symmetric spaces. First of all, the heat operator of the
 Laplacian is not of trace class. Hence we cannot use the trace of the heat opera-
 tor as in the compact case. In [18], [19], Muller introduced the relative trace to
 overcome this kind of difficulty and defined corresponding relative eta invariants

 and relative regularized determinants. In this paper, we follow Miiller's approach
 to study the (relative) spectral invariants for noncompact hyperbolic manifolds
 with finite volumes. If the continuous spectrum of the operator has a gap near
 zero, the relative trace behaves as the usual trace in the compact case. This is the
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 494 UNSUNG PARK

 case of the Laplacians acting on functions. The regularized determinants of these
 operators and their relations with Selberg zeta functions have been extensively
 studied for two and three-dimensional manifolds with cusps in [4], [5], [10], [11],
 [17]. However, if the continuous spectrum of the operator has no gap near zero,
 we need to know the large time behavior of the relative trace, so its relation
 with the scattering theory. In this paper, we study the spectral invariants of Dirac
 operators and Dirac Laplacians for odd dimensional hyperbolic manifolds with
 cusps, whose continuous spectrums reach zero.
 Our approach is to use the Selberg trace formula applied to test functions

 defined by the heat kernels. To do so, we analyze the corresponding geometric
 side of the Selberg trace formula, in particular, the unipotent orbital integral. A
 detailed analysis of these terms enables us to show that the Selberg zeta functions
 of odd/even type have meromorphic extensions over C. These results can be
 considered as generalizations of an old result of Gangolli and Warner in [8]
 to the case of nontrivial locally homogeneous vector bundles over noncompact
 locally symmetric spaces.
 We explain our result more precisely. Let X = F\Spin(2n+ 1, 1)/Spin(2n+ 1)

 be a (2n + l)-dimensional hyperbolic manifold with cusps. Here F is a discrete
 subgroup of G = Spin(2n +1,1) with finite co- volume. Throughout this paper,
 we also assume that the group generated by the eigenvalues of F contains no
 root of unity. We now consider the Dirac operator V acting on L2(X, E). Here
 the spinor bundle E over X is a locally homogeneous vector bundle defined
 by the spin representation rn of the maximal compact subgroup Spin(2n + 1) of
 Spin(2n+ 1, 1). Let us observe that the restriction of rn to Spin(2«) C Spin(2n+ 1)
 has the decomposition a+ © cr_ where o± denotes the half spin representation
 of Spin(2rc). Let K,t be the family of functions over G = Spin(2w +1,1) given

 by taking the local trace of the integral kernel of e~tT^ or be~tE^ where D is
 the lifting of V over the universal covering space of X. Now the Selberg trace
 formula applied to K,t has the following form,

 J2 E £(*. /A*> " I" r Tr(Cr(<^ - Wr(*+, i'A)7rr(<7+, iA)(/«) dX

 = Ir()Ct) + Hr(lCt) + Ur(JCt)

 where ap := (Jpl)a~ gives the point spectrum of V , Cr(<r+, /A) is the intertwining
 operator (note that Cp(cr+, /A) = Cr(tr_, /A) since cr+, <r_ are unramified) and /r(),

 #r(*X Ur(-) are the identity, hyperbolic and unipotent orbital integrals, respec-
 tively. Following [15], [18], [19], we define certain operators T>o(i) determined
 by V such that e~tVl - Y.U e~tVo{i)2 , Ve~tVl - ££1 V0(i)e-tVl^ are trace class
 operators on L2(X, E) where n is the number of the cusps of X. We also show
 that the spectral side of the above Selberg trace formula is equal to the relative
 trace Tr(^"^2 - Y.U e~tVl^) or Tr(P^"^2 - ££1 2?00>-^(0); for example,
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 ETA INVARIANT, REGULARIZED DETERMINANT 495

 if Kt is give by e /D\

 Tr(e-tVl -j^e-tVlA
 \ /=i /

 = J2 Yl KtfrM-j- Tr(Cr(<J+,-i\)C'r(cr+J\)7rr(<j+J\)(lCt))d\

 = /r(/Cr) + //r(/C/) + f/r(/C,).

 A similar formula holds for Tr(Ve~tv2 - Ylt\ T>0(i)e~tV°{0) with the correspond-
 ing kernel function Kt. The exact forms of /r(/Q, HrlKt) are well-known, in
 particular, the hyperbolic orbital integrals Hr(K>t) provide us with the Selberg
 zeta function of odd/even type. Hence, a main task in this paper is the analysis
 of Ur(JCt). To do so, we use a result of Hoffmann in [9] and perform explicit
 computations for the weighted unipotent orbital integrals for our concerned cases.
 These explicit computations constitute some of the main ingredients of this paper.
 By these explicit computations, we can show that Ur(ICt) = 0 if K,t is determined

 bybe~tdl.
 Following Muller's approach in [17], [18], [19], we define the eta func-

 tion ryo{s) and the zeta function Cx^C5) using the relative traces Tx{e~tV>2 -
 Em e-tVl^\ Tr{Ve-tVl - ZU V0{i)e~tVl^ respectively (see (44), (30), (31)
 for the precise definitions of %>(5), ^{s)). The continuous spectrum of V is the
 whole real line, hence the large time contributions of the relative traces can also

 give rise to poles of 7/p(s), Cd2^)- Therefore, we need to consider separately the
 small time contributions and the large time contributions for the meromorphic
 extensions of r/p(^), (?>2(s). We use the analytic expansion of the intertwining
 operator along the imaginary axis to get the large time contribution and we ana-
 lyze all the terms in the geometric side of the Selberg trace formula for the small
 time contribution. We prove the following meromorphic structures of the eta and
 zeta functions.

 Theorem 1.1. The eta function T0(z) and the zeta function Cx>2(z) have the
 meromorphic structures f

 T((z + l)/2) rn>(z) = £

 oo a at u oo

 k=-nZ + IC 2^2^ Z it=0Z ^ 2

 where /?*, (3'0 are locally computable constants, 7*, 7^ are constants which are
 determined by the intertwining operator Cr((T+, i'A), h is the multiplicity of the zero
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 496 JINSUNG PARK

 eigenvalues ofV, and K(z), H(z) are holomorphic functions. In particular, rjviz)
 and Cv2(z) are regular at z = 0.

 It follows from Theorem 1.1 that we can define the eta invariant by

 r){V) := %,«)).

 Following [12], we use the Selberg trace formula to derive the relation of the
 eta invariant rj(V) and the value of the Selberg zeta function of odd type Zfj(s)
 at s = n (see (45) for the precise definition of Z#(.s)). Let us remark that Zfj(s)
 is defined a priori only for Re(^) » 0 and the meromorphic extension of Z°H(s)
 over C is one of the main results of this paper. As we mentioned above, we
 show that all unipotent terms are vanishing in the Selberg trace formula applied
 to the odd heat kernel function. In conclusion, the equality of the relative trace
 and the orbital integrals for the odd kernel function is exactly the same as in
 the case of compact hyperbolic manifolds. Therefore we can expect the same
 formula of rj(D) and Z^{s) as in compact hyperbolic manifolds. However, in
 the corresponding functional equation, the term determined by the intertwining
 operator appears. The following theorem states our results for rj(D) and Zff(s).

 Theorem 1 .2. The Selberg zeta function of odd type Zff(s) has a meromorphic
 extension over C with s-nas a regular point and the following equalities hold:

 ri(V) = -,\ogZ°H{n\
 717

 so+oat.-.) = «po^C£S))~^' *■ "t
 Here C±(s) are linear operators given by Cr(o+, s) = I _ , x "I I .

 \C+(s) , x 0 J

 We can define the zeta function Cr>2fo s) of the shifted Dirac Laplacian V2+s2
 where s is a positive real number. Now the continuous spectrum of V2 + s2 does
 not reach 0 and the large time contribution does not create any poles of Cp2(z,s).
 Therefore we can see that Cv2(^s) is regular at z = 0 by Theorem 1.1. It follows
 that the regularized determinant

 Det(P2,5):=exp(-C^2(0,5))

 is well defined. We show that Det(P2, s) can be extended to a meromorphic func-
 tion of s on C. Let us observe that Det(£>2,s) ^ Det(£>2, -s) as a meromorphic
 function over C (see Remark 8.2). We use the Selberg trace formula to prove a
 relation between Det(£>2, s) and the geometric data, which consists of the Selberg

 zeta function of even type ZeH(s) (see (58) for the precise definition of ZeH{s)) and
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 ETA INVARIANT, REGULARIZED DETERMINANT 497

 certain meromorphic functions over C derived from the identity and unipotent or-

 bital integrals. Let us also remark that ZeH(s) is defined a priori only for Re(^) » 0
 and its meromorphic extension over C is one of the main results of this paper.
 By a similar manner as in the previous case, we also derive a functional equation
 for Det(D2,s) and ZeH(s) where the unipotent factor plays a nontrivial role. The
 following theorem states our results for Det(£>2,.s) and ZeH(s).

 Theorem 1 .3. The Selberg zeta function of even type ZeH(s) has a meromorphic
 extension over C and the following equalities hold for any s G C:

 Det(P2, s) = CZeH(s + n)T [s + ± J exp Un / p(a+, iX) + Pv(iX) dXj ,

 DetCD2,*)2 = C^detCK^^r^^Z^ + ^Z^n-^^^+^r^+i))"2^

 where C is a constant, p(a+, s) is Plancherel measure for a+, Pu(s) is an even
 polynomial of degree (2n - 4), and k denotes the number of the cusps ofX .

 If we compare Theorem 1.2 with Theorem 1.3, we can see that there are no
 defect terms determined by the cusps in the relation of rj(V) and Z#(n). But the
 defect terms appear in the relation of Det(V2,s) and ZeH{s).

 This paper has the following structure. In Section 2, we define a Dirac op-
 erator V for the locally homogeneous vector bundle E, which is defined by the
 spin representation rn of maximal compact subgroup Spin(2n + 1). We introduce
 an operator £>o(O naturally determined by V, and using this we define the rel-
 ative trace. In Section 3, we introduce the Selberg trace formula for nontrivial

 locally homogeneous vector bundles over noncompact locally symmetric spaces
 of rank 1. In Section 4, we use result from [9] to analyze the unipotent terms. In
 Section 5, we derive the relation between the relative trace and the spectral side

 of the Selberg trace formula. In Section 6, we define rfr>(s) and Cv2(s) ^ prove
 Theorem 1.1. In Sections 7 and 8, we prove Theorem 1.2 and Theorem 1.3 using
 results of Sections 3, 4 and 5.

 Acknowledgments. The author wants to express his gratitude to Werner
 Muller and Werner Hoffmann for their helpful comments on this paper. He also

 thanks Paul Loya, Morten Skarsholm Risager, Masato Wakayama and Krzysztof
 Wojciechowski for help during the writing of this paper. Finally he thanks the
 anonymous referee for pointing out many mistakes and giving several comments,
 which improved this paper considerably. A part of this work was done during
 the author's stay at ICTP and MPI. He wishes to express his thanks to ICTP and
 MPI for their financial support and hospitality.

 2. Dirac operators on odd dimensional hyperbolic manifolds with cusps.
 Let G be a noncompact connected simple Lie group with finite center and let
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 0 denote its Lie algebra. We assume that the real rank of G is one. Let F be
 a discrete subgroup of G such that the group generated by the eigenvalues of
 F contains no root of unity. Let AT be a maximal compact subgroup of G, 0
 the associated Cartan involution, t © p the associated Cartan decomposition, and
 C( , ) the Killing form of g. Let a be a maximal abelian subalgebra of p; a is
 one dimensional since the rank of G is 1. Let O be the set of roots of (g, a).
 Choose an order for O and let g = 0o © Z)aeo+ 0a © 2Zago+ 0-a be the root space
 decomposition where go is the centralizer of a. Let ot\ be the unique simple
 positive root; then O+ = {ai,2ai}. Let na, := gai and ti2ai •= 02ar This last
 space may be 0. If N = exp (na, 0 U2ai ) and A = exp (a), then G = NAK is an
 Iwasawa decomposition. Let Po = NAM (with M the centralizer of A in K) be the
 associated minimal parabolic. The G-conjugates of Pq are the proper parabolic
 subgroups of G. A parabolic subgroup P is called F-cuspidal if TDN(P)\N(P) is
 compact. Here N(P) is the unipotent radical of P which, we may assume, is G-
 conjugate to N. Let fV = {P\, • • • ,P*} be a complete set of F-conjugacy classes
 of F-cuspidal subgroups of G.
 From now on, we assume that G = Spin(2n +1,1) and K = Spin(2n +1). Let

 X denote the noncompact symmetric space given by Spin(2n+ 1, 1)/Spin(2n + 1).
 The Killing form C( , ) provides us with an invariant metric on G/K by (Y9Z) =

 ^C(Y,Z) for Y,Z G p, which gives us constant curvature ( - 1). We use the spin
 representation (rn, VTn) of Spin(2n+ 1) to define a homogeneous vector bundle E
 over X = Spin(2n + 1, 1)/Spin(2n + 1) by E = G x VTn/ ~ where

 (g,v)~{gf,i/) if (gr,i/) = (gk,rn(k-l)v)

 for g,gf G G, k G AT. We denote such equivalence classes by [g, v]. Note
 that £ admits a left G action defined by golg, v] = [gog, v\. If we restrict the
 spin representation rn of K = Spin(2n + 1) to M = Spin(2n), then rn decom-
 poses into two half spin representations a+, cr_ of Spin(2n) . Two representations
 (cr+,Ha+),(cr_,H(J_) are unramified and w+ = <j_,wcj_ = a+ for the nontrivial
 element w G W(A) = M*/M where Af* is the normalizer of A in AT. We define
 the Dirac operator D : C°°(X,£) -> C°°(X,£) by

 2n+l

 D=^c(X,)VX/,
 i=i

 where {X/ : 1 < i < In + 1 } is a left invariant orthonormal frame such that
 H := X2n+i at eK spans a, and V is the Levi-Civita connection on E.

 We consider a locally symmetric space given by X = F\Spin(2n + 1,1)/
 Spin(2n + 1) where F is a discrete subgroup of Spin(2n +1,1) with unipotent
 elements satisfying the condition in the introduction. As a consequence of this
 assumption, F is torsion free and F n P = F n N(P) so that F n P\N(P) =
 rnN(P)\N(P). Then X is a (2n+ l)-dimensional hyperbolic manifold with cusps.
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 ETA INVARIANT, REGULARIZED DETERMINANT 499

 We denote by E the quotient space T\E. This is a locally homogeneous vector
 bundle over X. Moreover the Dirac operator D can be pushed down to X. We
 denote this operator by D and its unique self adjoint extension on L2(X, E) by
 V. The hyperbolic manifold X endowed with the metric ( , ) has a following
 decomposition,

 (1) X = X0UWlU--UWK,

 where Xo is a compact manifold with boundaries and W,-, i = 1, . . . , k are ends of
 X. (In general, Xo and W/'s may have the nonempty intersections each other.) For
 each end W[ which we call as cusp, Wi = [0, oo) x Ni and N( can be identified
 with the flat torus T2n with the metric dn2, and the restriction of ( , ) to Wt has

 the form dg2(r, x) = dr2 + e~2rdn2{x) for (r,x) G [0, oo) x Nh
 Now we have the following expression for D over the cusp W,- ,

 (2) D = c(H)(VH + B-nld)

 where B = Ya"\ c(Xi)c(H)V%. with Levi-Civita connection V^ over E\N (see
 (7) in [2]). Note that B has the property c(H)B = -Bc(H) and Eo := ker(S)
 can be identified with VTn. Let 0 < /j,\ < fi2 < fJ>3 < " * -* oo be positive
 eigenvalues of B, each eigenvalue repeated according to its multiplicity with
 corresponding eigensections t/jj. We denote by E^ the eigenspace corresponding
 to fij. We decompose

 L2(R+ x NhE\R+xNrdg2(r,x))

 into

 L2(R+, £0, ^2nrrfr) 0 0^L2(IR+, E^ 0 c(ff)£Mr e~2nrdr)

 where M+ denotes [0, oo). Note that Eo = VTn is a symplectic vector space with

 a symplectic structure (c(H) , ). We fix a Lagrangian subspace L of £o - VT|I
 such that £0 = ^ © c(/f )L. Then the map

 gives a unitary equivalence

 L2(R+, £0, ^2nr^r) e ©^L2(R+, £„. © c(i/)£M., e"2nrJr)

 S ©/if+)L2(R+, C2, dr) © ©^L2(R+, C2, rfr)
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 500 JINSUNG PARK

 under which the Dirac operator D over the cusp W, decomposes as follows

 0) d-+ efi^Doee^D^.

 where

 M"U+^ ° ;■
 Hence the Dirac Laplacian D2 is transformed into ©/iespec(£)£^ where D2 =

 -^+/x2onL2(R+,C,rfr).
 We now consider the operator

 c(H) (J- - nldj : Cg°(lR+,£o) -> Cg°(R+,£b)

 whose L2 -extension (with respect to e~2nrdr) is transformed to d(<r+)-copies of
 Do in (3). Now, we put

 Cg°(R+,£o,L) := i<t> € Cg°(E+,£0) | 0(0) G L},

 then the following operator

 (4) c(H) (jr - nld) : qj°(R+,£0,£) - L2(M+,£o,e~2m"</r)

 is essentially self adjoint. By the natural embedding of R+ into the geodesic rays
 in Wi C X, we can regard L2(R+,E09e~2nrdr) as a subspace of L2(X,E). The
 operator c(H)(£ - nld) in (4) can be extended to the self adjoint operator on
 L2(X,E) by the zero map over the orthogonal complement of this subspace in
 L2(X, E). For each Wi, in this way we obtain the operator T>o(i), i- 1, ...,«. We
 can see that each Vq(i) has no point spectrum. Now we have:

 Proposition 2.1. The differences (e~tv2-ZU e-"*®), (Ve~tv2 ~ZU A)(0
 e~tVo^) are trace class operators on L2(X, E)for t > 0.

 Proof. First choose a smooth function gs such that 0 < gs < 1, gs(x) = 1
 for x e Xo and gs((r, •)) = 0 for (r, •) G W, with r > s for 1 < i < k. Denote
 by Ugs, U\-gs the operators in L2(X,E) defined by multiplication by gs, 1 - gs

 respectively. Then, for s » 0, Ugs( ^£1 ^~/po(')) is of trace class and the support

 of U\-gs(J2?=\ e~tVoW) consists of disjoint /^-components lying in W/'s. So, for

 our proof we may assume that the supports of e~tVl{i), Wi's are disjoint each
 other. Now pick / G C°°(X) such that 0 < / < 1, f(x) = 1 for x G Xo and
 /((r,)) = e~* for (r,) G Wi with r » 0 for 1 < i < k. Denote by Uf the
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 ETA INVARIANT, REGULARIZED DETERMINANT 501

 operator in L2(X,E) defined by multiplication by/. Then we may write

 e-t& _ £ e-tvlii) = {e-iv> _ £ c-m®) o v-i o Uf o e-{&
 i=\ 1=1

 + ^^-Ipo2(O o Uf o t//1 o (H2* - £H*W\ .
 1=1 \ i=l /

 The heat kernel estimates for e"'^2 and X)/=i e~tVl{i) show that (e~^2 - Y!L\

 e-L2v2oM)oUf\ Uf oe-L2V\ EU e^l^oUf and Uf1 o(Hp2 ~E£i ^^o(0)
 are Hilbert-Schmidt operators. The composition of Hilbert-Schmidt operators is
 of trace class, hence e~tT>1 - Y!L\ e~tVo^ is a trace class operator. The remaining
 case is proved in the same way. □

 3. The Selberg trace formula. Let Rr be the right regular representation
 of G on L2(r\G) and / be a right /^-finite function in the Harish-Chandra LP-
 Schwartz space CP(G) where 0 < p < 1. The trace of the restriction Rr(f) to the
 discrete part L^(r\G) of L2(T\G) can be written as

 Tr(flr(/)|L2(r\G)) = /r(/) + HT(f) + UT(f) + 5r(/) + rr(/).

 Here

 ir(f) = voi(r\G)/(i),

 Hr(f) = Yl Vol(r7\G7) / f(x-l7x)dx,
 {7:hyperbolic} JG^G

 ur(f) = T^{Ci(nri(/) + c2(r)r2(/) + c/1(r)r;(/)},

 Sr(f) = -L V / Tr ( Cr(<7, vYx^-Cy(g, v)>ky(cj, u)(f)) dv,

 rr(/) = - J E Tr(Cr(a,0)7rr(or,0)(/))

 where T7, G7 are centralizers of 7 in T, G respectively, the constants C\(T), C2(T),
 C[(T) and tempered distributions T\,T2, T{ will be discussed in the next section,
 and

 Cr(<7, u) : Hr(<r, v) -> Wr(<r, -^)

 denotes the intertwining operator (see pp. 166-167 in [1], pp. 9-10 in [22] for
 the precise definitions of Cr(<r, v\ HY{(J,v)\ We refer to [1], [20], [22], [23] for
 detailed expositions of the Selberg trace formula. The various invariant measures
 that we use are normalized as in [20]. More precisely, let die be the Haar measure
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 on K which assigns to K total volume one, let d&, d^ be the exponentiation of
 the normalized Lebesgue measure on the Lie algebra a, n of A, N, respectively,
 relative to the Euclidean structure associated with the Killing form. Then the
 Haar measure do is determined by

 dG(x) = a2pdN(n)dA(a)dK(k) for x = nak

 where p is the sum of the positive roots of (g, a) divided by 2.

 The kernel Kt{x : y) of the integral operator e~tT* (or De~tDl) over G/K
 is a section of E El £*, the external tensor product of E and E* over G x G.
 The bundle £ is a trivial bundle, hence the kernel Kt(x : y) is an element of
 (C°°(G x G) <g> End(VT/l))*, which consists of endomorphism valued functions
 on G x G invariant under K. It follows that there exists a function Kt(x) : G - >

 End(VTn) such that

 Jfr(x:y) = ^-1y) and Kt(k^xk2) = r^r1)^)^^)

 for jc, y G G, /:i , ^2 G A\ We define the local trace of Kt(x) to be the scalar function

 on G given by Kt(x) := tr(Kt(x)). We denote by ^(cr, v) the Fourier transform of
 Kt for the unitary principal representation tt^ ^ of G, that is,

 From now on, we will denote by Kf , ^ff the scalar functions corresponding to

 e-/5\ D^-r52. By (4.5) in [13], we have:

 Proposition 3.1. For A e R, we have

 Kf(a±, iX) = e~tX\ K?(a+, /A) = Xe~tX\ Kf(a-, iX) = -Ae"^.

 Since a± is unramified, the intertwining operator Cr(cr+,z/) = Cp(cr-,^) act-
 ing on Wr(cr+, 1/) = Hr(cr-, v) switches the subspaces induced by the representa-
 tions cr+,cr_. Hence, Cp(cr+,i/) takes the form

 with respect to the decomposition of Hr((?+, v). Therefore, we have

 r („ »r'^r ^ /c_(-i/)C» 0 \
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 ETA INVARIANT, REGULARIZED DETERMINANT 503

 and

 TWO = -^Tr(Cr(<7+,0)7rr(a+,0)(-)) = 0.

 Since th\m = a+ © <r_, the Selberg trace formulas applied to Kf , K° are given by

 (5) J2 £ Kf(a,i\k)-]- 47r -7-00 [°° Tr(Cr(a+,-i\)C'r(a+,i\)nr(cr+,i\)(Kf))d\ °=°± w 47r -7-00

 = £ ^ _ ^±> r e-^^CKa,, -iA)Cr(o-+, /A)) </A

 = lT{Ket) + HT{Ket) + UT(Ket),

 (6) V V «*((7, /Afc) - -?- /°° Tr(Cr(a+) -/A)C^(a+, /A)7rr((T+) i\XK°))d\

 = V A^"'A* -^A T Ae"'A2tr(C_( - iA)C+(/A)) <*A

 + ^ /°° A^-'A2tr(C+( - iA)C_(iA)) d\

 = V \ke-'xl - ^ /°° Ae-rA2trJ(Cr(a+, -iA)Cr(a+, iA)) dX
 At6<TP

 = /r(^) + ffr(^) + C/r(^)-

 where d(a+) is the degree of a+ (although we know d(a+) = 2"~l, we will use
 the notation d(a+) instead of 2n~x since this indicates the origin of the constant
 factor) and

 tr,(Cr(ff+, -v)C'r(a+, v)) := tr(C_( - u)C+(u)) - tr(C+( - i/)C_(i/)).

 For Ir(Kt), we have

 Kt(a+, iX)p((T+, i\) dX+ Kt(a- , i\)p(<T- , iX) dX 1 ,
 -OO ^ - 00 /

 where p(a±,i\) is the Plancherel measure which is an even polynomial with
 respect to A. The equalities Kf(a±, iX) = e~t>? and p(a+, iA) = p(a-, iX) give

 (7) Ir(Kf) = 2 Vol(r\G) f°° e-tx2p(a+9 iX) dX

This content downloaded from 210.219.50.14 on Thu, 02 May 2019 04:03:53 UTC
All use subject to https://about.jstor.org/terms



 504 JINSUNG PARK

 and Kf is odd with respect to A so that

 (8) W) = 0.

 It is well known that

 (9) Hr(Kf) = -JL
 l(C )^

 x Yl l(Cy)j^rlD(jyl (xCT+K) + x<r_K) )e-3~,
 7: hyperbolic

 (10) HT{K°) = -^-j
 (4nt)2

 l(C )^

 x £ '(Cy)2^)"1^!)"1 ix^Mh) - X<r_(m7) )«"^-,
 7:hyperbolic

 where /(C7) is the length of the closed geodesic C7, .7(7) is the positive integer

 such that 7 = 7q7) for a primitive element 70, D(7) = ^^1 det( AdC^m^,)"1 -
 /|n)| for the element a1m1 G A+M which is conjugate to 7 and Xcr is the character
 of a.

 4. Unipotent terms. In this section we compute unipotent terms Ur(Kf\
 Ur(Kf). We employ the formula obtained by Hoffmann (see [9]) to compute these
 terms explicitly. By this explicit computation and Proposition 3.1, it follows that
 Ur(K?) = 0. This simplifies many steps related to the application of the Selberg
 trace formula for Kf.

 For a real rank 1 group G, the unipotent term for a right ^f-finite function /
 in CP(G), 0 < p < 1 is given by

 (id ur(f) = J-^dcrmc/) + c2(nr2(/) + cicnTft/)},

 (see theorem on p. 299 of [20]). Here a\ is the unique simple positive root for
 (0, a), the constants Ci(O, C2(O, C[(T) which depend on T are computed in [3]
 and

 Tl(f) = A(ni) J^\ JnJk I f f(k-lnk)dkdn A(ni) JnJk

 T2(f) = ^r\[ f(xnox-l)dx+ f f{xn^x-l)dx\

 T[(f) = m* *2"*2 / / [ f(k-lnln2k)\og\log(nl)\dkdnldn2i
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 ETA INVARIANT, REGULARIZED DETERMINANT 505

 where no is a representative of the nontrivial unipotent orbit in H2, w, = dim(rii)
 and A(n\) is the volume of the unit sphere in n\ and Gn is the centralizer of an
 element n in G.

 In our case, G = Spin(2n + 1, 1), the second term T2(f) = 0 and ni2 = 0 in
 the third term T[(f) since N = N\. The first term T\ for Kt is given by

 Tx{Kt) = - 27rA(ni) 1- f \J-oo /°° £,(*+, /A) dX + J-oo /°° £,(<r_, /A) dx) ) . 27rA(ni) \J-oo J-oo )

 We have £f (a±, /A) = e~tXl and A?(a±, i'A) = ±\e~tX\ which implies

 (12) Ti(Kf) = - ^- /°° e"rA2 rfA and r^^) = 0. 7TA(Ui) 7-oo

 The third term T[(f) is more complicated and we need to introduce some
 notation. Let TM be a Cartan subgroup in A#, so that 7 = A • 7^ is a Cartan
 subgroup of G. Let Z^ denote the set of positive roots for (nxc^c). Let pzM
 be the half sum of elements in Za/. We denote by E^ the set of positive roots

 of (flc>t<c) which do not vanish on oc- The union of Em with I*A gives the
 set of positive roots for (gc, tc) denoted by EG- Let Ha e tc be the coroot
 corresponding to a e ±ZG, that is, a(Ha) = 2, a^i/a) G Z for all a, a7 G ±ZG
 and n := I\aexM Ha is an element of the symmetric algebra SCW)- We denote
 the simple reflection corresponding to a G 2G by sa. Following the corollary on
 p. 96 of [9], we put

 '(/) - T- £ /°° Q(a' -/A>/^' /A> dA

 where

 Q(a,iA) = 2d(oMl)-1- £ A<"a)^J

 x (^(1 + A^ffa)) + ^(1 - \*(Ha)))9

 and where rf(cr) is the degree of a, ^ is the logarithmic derivative of the Gamma

 function and A^ - pzM is the highest weight of (a, iX) eM x ia.
 The principal series representation (tiv^, Ha^) depends on the parabolic sub-

 group P and we denote its dependence on P by (tt^CP), Ha^P)). The intertwin-
 ing operator
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 is defined by

 (JplP(a, v)4>) = J <p(xn) dn

 and satisfies

 Jp\p((7, ^TTcr^iP) = 7Ta^(P)Jp\p((T, v).

 The restriction to K defines an isomorphism from Ho^P) to H^P). Then
 Jp\P(a, v) can be considered as a family of operators from Ha(P) to Ha(P).
 Here Tia(P) is the space of all measurable functions v : K - > Ha such that

 v(km) = a(mylv(k)

 for all m e M, it G K. Let

 7p(ct,i/ :/) := -Tr(?r (rAf)Jp\p(<(T>v)~Xdi'Jp\p((J>1')),

 where the derivative dv is taken with respect to v for the family of operators

 Jp\P(a,v) acting on Ha(P). Then there exists the Harish Chandra C-function
 CT(a, z/) such that

 TTJp\p{a,v)~xdvJp\P((j,v) = CrCcr,^)"1^^^,^)^,

 where TT is the projection to the r-isotypic component of Hayl,(P). We refer to
 [6] for more detail. We have the following proposition for CTn(a±,v):

 Proposition 4.1. For the half spin representation a± of Spin(2n),

 r ( -u r < -^ (2ft -1)! T(i\ + \) JA

 Proof This follows from Theorem 8.2 in [6]. □

 By the equality (8) (see also (49)) in [9], the weighted orbital integral T[ is
 given by

 r'(/)=^j(/(/)+^ p-v- ^ d{a) rjp{ajx :/) dx+^ ^)^/^°))'
 (TEM creM

 where p.v. means the Cauchy principal value and 2n(a) is the order of the zero
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 of p(a, v) at v = 0. Using that n(a±) - 0 and Proposition 4.1 we obtain

 T'(*f) = 2^)

 x f°°e-tX2 (Q(ct+, -iX) + Q(a_, -iX) - 2d(a+)diX log CT>+, /A)) dX,

 W> = T^K f°° ^-'x2(Q(a+,-iX)-Q(a.,-i\)) dX.

 Now we consider Q(cr±,/A) in the following proposition.

 Proposition 4.2. For the half spin representation a± of Spin(2n), we have

 Q(a+, /A) = Q(a_, /A) = -^ ^ (/A - » + 5)

 ^(-iA-n + ^+^(iA + ^)+^(-iA + ^)+nA)

 where P"(A) w an ^v^n polynomial of degree (2n - 4) for n > 2 awJ P!(A) is a
 constant.

 Proof The n = 1 case can be computed in the same way as for the n > 2
 cases, hence we may assume that n > 2 in the following proof. The highest
 weight of the half spin representation a± of Spin(2n) C Spin(2n + 1) is given by

 -(e2 + e3 + '- + en±en+\)

 with respect to the standard basis {ez}. This implies that

 / 1\ / 3\ 3 1

 i\e\ +cr± + psM = i\e\ + I n - - J e2 + ( n - - 1 e3 + • • • + -en ± -^n+\-

 The positive roots a G Xa are given by e\ - eJ9 e\ + ej for 2 < j < n + 1. Then

 we can see that S(ei-ej)(i\e\ + cr± + psM) is

 iXej + U - -je2 + • • • + (n -; + ->i + • • • + -en ± -en+x if 2<j<n,
 1 3 1

 /Aea+i + (n - -)e2 + -' + -en±-e{ if j = n + 1

 and J(e1+e,.)0'Aei + cr± + pzM) is

 - i\ej+ (n- -)e2 +

 - /A^n+i + f n - - J e2 + - • • + -en T ^ if J = n + L
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 These give us the formula

 (13) n(s(ei±ej)(i\ei + a± + psM))

 {-H-->-k)y-{-*-®y(-*-®l
 where

 n (/-*)(2n-*-/+i)

 for 2 < j < n + 1. In particular, we obtain

 n(sei±ej(i\ei + a+ + pz^)) = n(sei±e,-(L\ei + a_ + px^))

 n^j-e-O^i + cf± + PiM )) = n(^1+e/(/A^i + a± + piM))

 for 2 < y < n + 1. From now on, we denote by P/(A) the polynomial of A in (13)
 for 2 < 7 < n + 1. Note that /^(A) is an even polynomial of degree 2(n - 1). On
 the other hand, (i\e\ + a± + piM)(//a) is given by

 i'A - ( n - j + - J if a = e\ - ej, 2 < j < n

 1 .r

 /A + (n-J+j) if a = ^i+£-y, 2<j<n

 iX ± - if a = ^i+en+i.

 Then the pair (^(1 + (/Aei + a± + pzM)(Ha))9 tp(l - (i\ex + cr± + pLMXHa))) is
 given by

 ^fiA-n+7--J, ^f-iA + n-yH--) for e\~eb 2<J<n

 ip(iX + -J, if;(-iX+-J for e\ - en+u a = <j+
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 ETA INVARIANT, REGULARIZED DETERMINANT 509

 ^MA + -j, ^f-/A + -j for ei-^n+i, a = a-

 ^NA + az-; + -J, ^f-/A-w+;--J for ei+e,-, 2<j<n

 ^V +2y' ^(~/A+2) for ei+en+u a = a+

 ip(i\ + -L ^(-iX+2j f°r ei+e»+l' a:=(7-'

 Comparing the two sets

 jn(sa(/Aei + a+ + pxM))9 1 + (iXei +a+ + pzM)(Ha\ 1 - (iXei +a+ + /9sM)(Ha)},

 jn(sa(/Aei + a-+pj:M))AHiXe\+(T-+pItM)(Ha)A-(iXei+a-+pIiM)(Ha)^

 we see that they are equal to each other, so that Q(cr+, /A) = £2(a_, i'A). We now
 compute the exact form of Q(<r+, /A) = Q(a_, /A). Using the relations il>(z + 1) =
 i + ^(z), we have

 ip(i\-n+j- -)+ip(^\-n+j--)+*p(i\+n-j+^+^

 i , , 2(w-^+i) , -2H+D , , -2(w~i)

 + ^ f /A - n + - j + xp (-i\ -n + -J+ip(i\ + -j+ip (-i\ + - J .

 Now using the formula (see the last line of p. 95 in [9]),

 £ IKjaA,) = 2n(A(7),

 we decompose

 1 ^ ^A^ x /^(1 + K(Ha)) + ^(1 _ ^^^A
 2a€2:A n(^«}

 into
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 and

 j n+\

 where

 R(X,_

 ^A)-A2 R(X,_

 We can see, from the definitions of P/(A) and /?7(A), that Pj(X)Rj(X) is an even
 polynomial of degree 2n - 4. This ends the proof. □

 For the constants in (11), comparing proposition 6.2 in [1] with theorem 2 in
 [3], we obtain

 (14) Ci(O mi =*
 |ai| A(m) 2*

 Now we have the following corollary.

 Corollary 4.3.

 Ur(K?) = 0, Ur(Kf) = - / e~tX (PV(X) + g(A)) dX

 where Pu(^) is an even polynomial of degree (2n - 4) and

 Proof The first claim follows easily from (12), (14), Proposition 4.1 and 4.2.
 For the second claim, Q{\) is a priori given by

 _^)(.(,(,,_n+.)+,(_,_n+.))

 If we use the relation i/>(z + 1) = \ + ^fe)» then we can reduce the above formula
 to the claimed one for Q{\). □

 5. Relative TVaces and Spectral Sides. In this section we study relations
 of the relative traces with the spectral sides of the Selberg trace formulas applied
 to the test functions Kf,Kf. A formula of this type was proved by Miiller for
 the similar cases in [15], [18]. Following [15], [18], we prove the corresponding
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 formula for Dirac operators acting on spinor bundles over hyperbolic manifolds
 with cusps.

 First, let us observe that L2(X, E) can be identified with the space

 (L\T\G)®VTn)K = {feL\r\G)®VTn\f(^)=rn(k)-lf(x) for JceK,xeG}.

 The decomposition of L2(T\G) = L](T\G) © L*(r\G) allows us to decompose

 (15) (L2(T\G) ® VTnf = (L2d(T\G) ® VTnf 0 (L2C(T\G) ® VTn)* .

 The continuous part (Z^(r\G) ® VTn)K is spanned by the wave packets with the
 Eisenstein series, so we need to know how D acts on the Eisenstein series. For

 O G (Hr(cr+, v) <S> VTn)K, the Eisenstein series attached to O is defined by

 E(p:v: x) := ^ O(7jc),
 7Grnp\r

 which is defined a priori for Re(i/) » 0 and has the meromorphic extension over

 C. Assume that O/,± is in the ±/-eigenspace of c(H) on (Hr((T+,v) ® V^)^ for
 7=1,.. . ,d(cr+). The Eisenstein series £(O/t± : /A : x) for v - iX satisfies

 (16) DE(®jt± : iX : x) = ±XE(®jy± : /A : jc).

 For (f) e Cg°(X,£), the decomposition (15) provides us with the formula

 (17) <Kx) = ^(0,0it)^W

 +j- E /°° £(°m : /A : x> / £(*/.+ : -/A : y)^) ^ rfA

 +t- E /°° £^- : /A : x> Jx / £(°^- : -/A : yMy) dy dX> +t- 4tt jr( J-oo Jx

 where {</>*} is an orthonormal basis of (LJ(T\G) ® V^)^. Since D preserves the
 decomposition of (15), we may assume that each 0* is an eigensection of V.
 Therefore (16) and (17) imply

 V<t>(x) = J2 A*W>' <f>k)Mx)
 Ait

 +t- E / A£(°/> : /A : x> / £<°/> : -/A : y)#?) ^ rfA

 -T- 47T E J-oo /°° A£(°;>- : /A : ^) / e<Pj>- : -/A : yMy* dy dX- -T- 47T ^ J-oo JX
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 From this we can see that the following equalities hold in the distributional sense:

 (18) e*v\x:y)= £ <T'A*&(*)®#(y)

 -f- Y, / * £(*;> : iX ■■ *) ® ^(*M- : "iA : y)* rfA
 ;=1 ^~ °°

 1 ^ /-oo x2
 +T-YI e x2 e((S>j>- : iX : *) ® E<&h- '■ ~iX '■ y? dX-

 (19) Ve-'v\x : y) = £ At«-'A*^(jc) ® ^J(y)
 AfcGcrp

 +- V / A<r'A £(Oy + : i A : jc) ® £(O,- + : -iA : yfd\

 i d(^)

 Recalling the decomposition (1) of X, we consider the subset W^ := [/?, oo) x
 A// in Wi. We choose /?o such that W,-^'s are disjoint each other for R > /?o. We
 put WR := U?=lWiji and X/? := X - W/? for R > Ro. The constant term of the
 Eisenstein series £(O : iA : jc) over Wi has the form

 (20) e(-*+*)rQ. + ^A^>r((Cr((T+, /A) ® Id)O) ..

 Here O£ is the component of O over Wt and note that the operator Cp(cr+, /A)® Id

 acts on (Hr((T+9iX) ® VTn)^. From now on, we assume that ||O/|| = 1 for i =
 1, . . . , k. We now discuss the Maass-Selberg relation in our context.

 Proposition 5.1. (Maass-Selberg) We have

 (21) / |£(Oy,± : /A : x)\2dx = 2kR -tr(C±(i\)C'T(- i\)) +O(e~cR)
 JxR

 = 2KR-tr(CT(-i\)C'±(i\))+O(e~cR)

 where c is a positive constant.

 Proof. We will consider only the case of O+ so we use the notation O instead
 of O+ in the following proof. The case of O_ can be done in the same way. It
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 follows from Green's formula that

 (22) (A - A')< £(<& : iX : x), £(<& : iA' : *) )Xr

 = (DE(Q:i\:x),E(Q:i\':x))xR-{E(<l>:i\:x),DE(<l>:i\':x))xR

 = { c(H)E(O : iX : jc), E(O : iA' : x) )9Xr.

 By (20), we have

 {c(H)E(O : /A : x),E(O : /A' : x))dWiJ(

 = i(e^iX+"^iM-iX'+n)R^i)dwiJi

 -/(e('A+")/f((Cr(aH /A)®Id)*),, e(iX'+n)\(CTi.aM iA/)®Id)O),)aWi.JJ+0(^-cR)

 = ie-*x-x'* - u**-X* J2 C+(iA)ttC_( - iA')« + O(e~cR)
 k=l

 where C±(i\)ik is a component of C±(i\). Now we use the functional equation

 / 0 C_(iA)\ / 0 C_( - iA)\
 Cr(<r+, iA)Cr(0+, -iA) = = Id,

 \C+(iA) 0 y Vc+(-iA) 0 )

 which implies the equality

 (23) (c(//)£(<D : iA : x), £(O : iA' : x))9WiJt

 _ ie-i(>r-\')R_iei(y-\')R

 - ieK*-X')RJ2C+(iX).kCi_iX>)k.

 + ,V^V>* f^ C+(/AkC_(-iA)fa+O(e-cS).

 Combining (22) and (23), we have

 (24) (A - A')(£(<D : iA : x),E(® : iA' : x))Xr = iKe-KX-x>vt - iW**"*'*

 + i««A-v)« ^ C+(iA)a(C_( - iA)« - C_( - i\')u) + O(g-c/f).

 If we pass to the limit A - ► A' after dividing each side of (24) by A - A', we get
 the equality (21). □
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 The next task is to consider the corresponding formula for T>o(i). We fix a

 Lagrangian subspace L in VTn as before. For an orthonormal basis {ty} C L, we
 define

 0;> := 7! (^ ~ ic(mj) ' ^ := 71 (^ + ** w')
 and

 e{<j>j& : /A : jc) := e("-/A)%+ + e(w+'A)>y,-,

 e(^,_ : /A : jc) := ^-/A)r0y,_ + ^A)>;>.

 Note that e(^,± : iX : jc) lies in C°°(1R+, VTn9L) := { 0 G C°°(R+,£0) I 0(0) G L }
 and

 c(i/) (jr -nld) ^t+ : iA : jc) = A <?(<£,> : iX : jc),

 c(//) ^ - /ild) ^,_ : iA : jc) = -A <?(</>,,- : /A : jc).

 As when we introduced T>o(i), we can regard e((/>j9± : iA : jc) as lying in W,- C X
 and denote such a section by El((j)jy± : iA : jc). Then, for </> = (0o, 0C) ^ ^2(^ -
 WhE) 0 L2(W/,£) with (f)c G C§°(Wi, £) and 0c|aw. G L,

 (25) 2?o(O0 = 47r J- E / AF(^>:/A : jc) / E^y.-iX : y)<t>(y)dy dX 47r ;=T ^-°° ^x

 - ^ E y A£'(^- : /A : *) yx %- : ^ - y)<t>(y)dydx.

 The following equality can be proved in the same way as in the proof of Propo-
 sition 5.1,

 (26) ^ / \E\^± : /A : jc)|2<£c = 2kR + O(e~cR)
 i=l JxR

 for some positive constant c. (Let us remark that there is no contribution over

 dW( by the choice of </>jt± when we apply the Green formula as in (22).) It follows
 from (21), (26) that

 (27) / |£(O;,± : /A : jc)|2 - £ |£%± : /A : Jc)|2tic
 Jx i=i

 = ^ ^ |£(<Dy,± : /A : jc)|2 - £ \E\<t>h± : iA : Jc)|2tic

 = -tr(CT( - iA)C4(iA)).
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 Finally, the following proposition is the result of (5), (6), (8), (18), (19), (25),
 (27) and Corollary 4.3.

 Proposition 5.2. We have

 (28) TvL^-j^e^A

 = yyaj _ <*°A /°°^2tr(Cr(a+,^A)CKa+, iA)) d A

 = /r(^f)+i/r(^)+t/r(«?),

 (29) Tr (pe-'^2 - £ V0(i)e^A

 = E ****** " ^ /°° A^A2tr5(Cr(a+,^A)C«^, iA)) </A
 Ait

 = V A^"^ - ^ /°° Ae"'A2tr(C_( - /A)C;(/A)) dX
 r^ 4tt y_oo

 + ^±) f°° Xe-tX\v(C+( - iA)CL(iA)) rfA
 4?T J-oo

 = ^r(^)-

 Remark 5.3. Although the definition of T>o(i) depends on the choice of the
 Lagrangian subspace L, the relative traces on the left sides of (28), (29) do not
 depend on this choice. This is because the right side of (26) does not depend on
 the choice of L.

 6. Meromorphic continuations of the eta and zeta functions. In this sec-
 tion, we prove Theorem 1.1, which provides us with the pole structures of the
 eta function and the zeta function over C. We follow [18] and [19] and define

 (30) w, (z) := -L- 1 JO f & Tr ive'^ - ± VoiDe'^A dt, 1 (-y) JO \ i=l )
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 for Re(z) » 0 and

 (31) rtodz) := -^- f°° & Tr (ve^2 - j^V^e^A dt,

 Cv^z) := j^ /V' [^ (e~<* - ± e"^ - *] dt

 for Re(z) <C 0 where h is the multiplicity of zero eigenvalues of V2. To define the
 eta invariant and the regularized determinant, we need to study the meromorphic

 extensions of rjx>,i(z) and Cd2,i(z) near z = 0 for i = 1,2. The difficulty, which is not
 present for closed manifolds, is the presence of continuous spectrum. Moreover,
 the continuous spectrum of V is equal to the whole real line in our case. Hence

 the meromorphic extensions of rfx>y2(z) and Cx>2,2(z) have nontrivial poles.
 We start with r/p,i(z). It follows from (10) and (29) that

 (32) Tr(P^p2 -^2?o(O^(O) = # rGK?)

 (4ttO27: hyperbolic

 The number c := min{r hyperbolic} /(C7) is a positive real number, hence as f - ► 0,

 (33) J^L. ^2 /(C7)2;(7)"1^(7)"1(Xa+(m7) - X^K))^"^ -fl^"#
 (4ttO27: hyperbolic

 for a constant a. Now (32) and (33) give

 Tr [ve~tVl - £ Po(/>-^(/)) ~ <i *"£ as MO.

 This means that rjr>,i(z) can be extended to the whole complex plane without
 poles.

 For Cx>2,i(zX we use (28) to get

 Tr (e-tv2 - £ e~tVlA = IT{K<) + //r(^f) + £/r(A?).

 Recall that

 1

 (34) HY(Ket)=-= Y,
 v47r'7: hyperboUc
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 ETA INVARIANT, REGULARIZED DETERMINANT 517

 As Hr(K°), we have

 (35) HY{Ket) ~ cle-Tt as t -> 0

 for a constant a' . We can see that Hr(Kf) does not give any poles in the meromor-

 phic continuation of (t>i,\(z). Next we consider Ir(Kf) and Ur(Kf). An elementary
 computation shows

 (36) /r(tff) = i>*rH

 for some constants 0*. By Corollary 4.3, we have

 *W) = x- 27T / *~'A CV(A) + G(A)) dA 27T J-00

 where Pt/(A) is an even polynomial of degree (2n - 4) and Q(X) is given by

 An elementary computation leads to

 (37) / e"'A Pi/(A) <*A = 5>*r*"i

 for some constants fejfc. Using the relations

 t/>(x + 1) = - + ^W, ^(jc) + V (* + j ) = 2(^(^) " lQg 2>'

 we have

 To deal with the digamma function ip, we use the following asymptotic expansion

 1 °° R

 where jB2a: are Bernoulli numbers. This implies the expansion

 (38) f°° e~tx2Q(X) dX - ^ c^"5 + ^r i log r as f-^0
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 for some constants c* and do. By (35), (36), (37), (38), we have

 oo

 Ir(Kf) + HT(Ket) + UT(Ket) ~ £ /?/" 5 + $r hog f as ^0

 for constants /Jjb/?o- Therefore Cv2,\(z) *s we^ defined for Re(z) > az + ^ and we
 can extend Cv2,\(z) to a meromorphic function on C, with poles determined by

 00 3i B' h

 (39) nzKv^iz) = £ - f-p 3i + :^K2 B' " 7 h +//l(z)

 where /?^,/?o are constants and H\(z) is a holomorphic function.
 To deal with the meromorphic extensions of r?x>,2(z) and Cr>2,2(z)> we consider

 the right sides of the following equalities,

 Tr(ve-lT>2 - J2V0(i)e-'v2°A =Y,he-'Xk

 - ^ 47T J-oo r Xe-'x2trs(Cr(a+,-iX)C'r(a+,iX))dX, 47T J-oo

 Tr (e-'v2 - f2e-v2°A - /i = ^ «"'A*
 V i=l / A^^O

 - -^ 47T / e~tX tr(Cr((7+, -/A)C^((j+, /A)) dX. 47T J-oo

 The discrete eigenvalues give

 Y,Xke~tXl - ^"cr, 5>"'A* - ^"cr as r^oc

 for a positive constant c. The operator Cr(cr+, /A) is analytic along the imaginary
 axis and

 tr5(Cr((7+,-iA)Cf((7+,iA)) = -tr5(Cr(a+, iA)Cr(<j+, -/A)),

 tr(Cr(a+,-iA)C"r(t7+,iA)) = tr(Cr((T+,iA)Cr((7+,-iA)),

 hence we have the following analytic expansion at A = 0:

 oo

 trJ(Cr((7+,-iA)C/r(a+,iA)) = ^/2^iA2A:+1,
 k=0

 oo

 tr(Cr(a+,-iA)Cr(<7+,iA)) = £>2*A2*
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 for some constants fik+x^gik- Therefore we have

 «1 oo

 (40) / Xe-'x2trs(Cr(a+,-iX)C'r(a+,iX))d\ ~ VS*'"^ as t -> oo,

 oo

 e-'A2tr(Cr(<J+, -f A)Cr(a+, i'A)) dX ~ ^ <y£r ^ as f -+ oo.

 The corresponding integrals over (-00, 1]aU[1, oo)a converge to 0 exponentially
 as t - > 00. Hence, the expansion (40) shows that t]t>,2(z) is well defined for
 Re(z) < 1 and extends to the whole complex plane with the following pole
 structure:

 (42) T((z + D/2)r)V,2(z) = ^ _ LK _ Z + K2(z) k=QZ _ LK _ Z

 for constants 7* and a holomorphic function K2(z). In the same way, the expansion

 (41) implies that Cx>2,2^) is wel1 defined for Re(z) < 5 and extends to the whole
 complex plane with poles determined by the equality

 (43) r(z)CP2,2(z) = £ _ * h_, + J/2(z) Jt=O Z _ * 2

 for the constants 7^ and a holomorphic function Hi(z).
 We define the eta and zeta functions by

 (44) f]v(z) := rtD%\(z) + ^,2(z), Cr^z) := Cx>2,i(z) + Cd2,2^)-

 Here now the right sides of these equalities are meromorphic functions over C
 with the poles described in the above. The equalities (39), (42), (43) give the
 following theorem:

 Theorem 6. 1. The poles of the eta function r)V{z) and the zeta function Cvi(z)
 are determined by the equations

 r((z + d/2)Vv(z) = Y, - wbi LK L + *(z)> k=oz LK L

 where K(z) and H(z) are holomorphic. In particular, t]t>(z) and Cvi{z) are regular
 atz = 0.

This content downloaded from 210.219.50.14 on Thu, 02 May 2019 04:03:53 UTC
All use subject to https://about.jstor.org/terms



 520 JINSUNG PARK

 7. Eta invariants, Zeta functions of odd type and functional equations.
 In this section, we study the eta invariant and its relation with the Selberg zeta
 function of odd type. We use the Selberg trace formula to prove a generalization
 of Millson's theorem in [12] for hyperbolic manifolds with cusps. Since the
 unipotent term in our situation vanishes (see Corollary 4.3), we obtain the same
 formula as in the case of Millson in [12]. We also derive the functional equation
 for the eta invariant and the Selberg zeta function of odd type.

 By the analysis in Section 6, the eta function r)x>(z) is regular at z = 0 and
 we can put z = 0 in the equality

 We define the eta invariant of V by

 r?(2»:= W(0) = -]= H Thrive^ -j^V«{i)e-tVlAdt.

 Let us recall that

 Tv(ve~tv2 -J2Vo(i)e-tVoA

 2iri x-^ oil i

 =

 (4ttO2 7: hyperbolic

 Using the elementary equality /0°° e~s2t- - ydt = ^^, we have
 (4ttO5

 /•oo / K \

 jQ e-shTr I Ve-'v2 - J2 Vo(i)e-'v2oU I dt

 = \ E '(C7)/(7)"I^(7)"1 (X^K) " X<r-K)) ^"^^
 7: hyperbolic

 = 5 E '(C7)/(7r1|det(Ad(a7m7)-1-/|n)|-1
 7: hyperbolic

 x ^K)-X^- (m7))e-(i+n)/(C->.
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 ETA INVARIANT, REGULARIZED DETERMINANT 521

 We define the Selberg zeta function of odd type by

 (45) Z°H{s) := exp j - £ j(7yl IdetCAd^m^"1 - I\n)\~l
 \ 7: hyperbolic

 x (x<7+K) - xa_K)>-5/(C^ )

 for Re(5") > 0. In Proposition 7.2 we will show that Z°H(s) has a meromorphic
 extension over C and Z°H(s) is regular at s = n. Now we have

 lo°° e-^'TriVe-^ - X>o(*>-'P°(/)) A = ~ log Z°H(s + n).

 Following the argument on p. 27 of [12], we use the equality

 for Re(z) < 1 to get

 =

 If we evaluate the above equality at z = 0, we get the following theorem.

 Theorem 7.1. For the Dirac operator V over a(2n+l )-dimensional hyperbolic

 manifold with cusps, the eta invariant rj(V) and the Selberg zeta function of odd
 type Zfj(s) satisfy

 (46) V(V) = -.\ogZoH(n).
 717

 Now let us show that Z£(s) has the meromorphic extension over C. We select
 a smooth odd function g(u) such that |g(ii)| = 1 if \u\ > c, g(u) = 0 near 0 and
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 /o°° g'(u)du = 1 where c = min{7: hyperbolic}'^)- We define

 (Hs(a+9\) := J^giuy-^e^du,
 \//5(a_, A) :=-//>+, A)

 for a complex parameter s. By the Paley-Wiener theorem, ( see theorem 2.2 in
 [12]), there exists fs over G with fs(a±, iX) = Hs(a±, A), /5(cr, /A) = 0 if a ^ cr±.
 Applying the Selberg trace formula to the one parameter family of functions fs
 on G for Re(s) » 0, we get

 (47) Yl H^a^ Ai)+ E H*lP-> A;>
 Xfi*P *fi<Tp

 d(cr ) f°°

 - -^ d(cr ) / f°° Hs(a+, \)Us(Cr(a+,-iX)C'r(a+, i\))d\

 = Yl /(C7);(7)"1O(7)"1 (x<r+(/n7) - xCT_(m7)) e-i/(C^
 7: hyperbolic

 = ^logZ^ + n).

 Here we used the fact that the identity, unipotent orbital integrals vanish by the
 definition of Hs(a±,X) and results in the previous sections. We shall use this
 equality to get the meromorphic extension of

 Z(s):=js\ogZ°H(s + n)

 over C and to investigate its poles.

 Discrete eigenvalue term. Integration by part gives

 1 roo 1 poo

 Hs(a±,X) = ±  s - iX Jo s + iX Jo

 This equality provides the meromorphic extension of Hs(a±, Ay) over C and we
 see that Hs(a±,Xj) has simple poles at /Ay, - iXj with residues ±mj9 Tmj for
 Xj G g^ where m, is the multiplicity of A/.

 Scattering term. We consider the scattering term

 (48) _ ^A f°° Hs(a+9 A)tr5(Cr(a+, -iX)Cr(a+, /A)) dX.
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 First we observe

 <D(z) := tr5(Cr(<7+, -z)^Cr(cr+,z)) = ^ (logdetC+(z) - logdetC_(z)) .

 Using the equalities CrO+,z)Cr(cr+, -z) = Id, Cr(cr+>z)* = Cr(cr+,z) and the first
 displayed formula on p. 518 and (6.8) of [16], we have

 det C+(z) = det C+(0) p\ n ^Z^1 •
 Re(<?+)<0 Z ^+

 det C-(z) = det C_(0) pz_ f] ^^
 Re(^_)<0Z ^~

 for some constants p+,p~. Here the infinite products are taken over the poles

 {q±} of det C±(z) respectively. Note that det C±(z) is holomorphic over the half
 plane with Re(z) > 0. Hence <D(z) has the following form over C:

 (49) o(z) = - y 2Reiq+) + y 2Re(g-}

 + log p+-log /?_.

 Now we consider the contour integral

 CR:=-L[ Hs(a+,z) trs{Cr(<J+,-iz)Cfv{G+Jz))dz
 4th Jlr

 where L/? = [ -/?,/?] U { Reie \ 0 < fl < n }. As in proposition 3.10 of [8],
 we can apply the Cauchy integral formula and obtain

 y

 - y -^- ^ f°° g\u)e-(s-<>-)udu\ Re(fe<0 S ~ «" ^ ' /

 for Re(5) » 0. Now the right side of (50) gives us the meromorphic extension
 over C. On the other hand, we can also show that

 1 /"°°
 lim CR = - Hs(<j+, A)tr,(Cr(<r+, -iA)Cr(o-+, iA)) ^A.
 «-»oo 47TJ J-oo
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 Here the integral over the semicircle of radius R vanishes as R - > oo by the
 definition of Hs(a+Jz) and (49). Therefore the meromorphic extension of the
 scattering term has simple poles at q± for Re(#±) < 0 with residues ±d(a+)b±
 where b± denotes the order of the pole of detCr(cr+,z) at q±.

 Combining the contributions of the Hs(a+, A/)'s and the scattering term, we
 see that Z(s) has a meromorphic extension over C and its simple poles are located

 at ±iA/, =F/A/ for A, G cr^, and at q± for Re(#±) < 0 with residues my, -my and
 ±d(a+)b± respectively. In particular, we can see that Z(s) is regular at s = 0.
 This implies the following proposition.

 Proposition 7.2. The Selberg zeta function of odd type Z°H(s + n) has a mero-
 morphic extension over C, and is regular at s = 0.

 Remark 7.3. The zeros of Z^is+ri) are located at ±i'A/ for Ay G o^, at q+ for
 Re(<7+) < 0 and their orders are m,, d(a+)b+. The poles of Z°H(s + n) are located

 at =f/A/ for A, G o^, at #_ for Re(#_) < 0 and their orders are m/, d(a+)b-.

 Let us study the functional equation of r/(X>) and Z#(s). We set

 R(s) := Z(j) - Z( - s) + rf(a+)O(j).

 Then R(s) is an odd entire function of s. Let /i(^) be an odd function which
 decreases sufficiently rapidly as lm(s) - > oo in the strip { s G C | |Re(j)| <
 n + €, e > 0 } and consider the contour integral

 Ct-^~. 2ni I h(s)Z(s)ds 2ni Jlt

 where LT is the rectangle with the corners a + iT, a - iT, -a + *T, -a - iT with
 n < a < n + e. Then we have

 1 ra+ioo i p-a-ioo
 lim £r = --: / /*(*)(£(*) - 2( - ^)) ^ + 2-^ / A(j)Z(5) ds.
 r-+oo 27T« yfl_/oo 27TI J-a+ioo

 We apply the Cauchy integral theorem to get the equality

 (51) ton^ ~* CT = 2 £ m^d'A,) + ^ d(a+)bkh(qk),
 ~* Xj -a<Re(qk)<0

 where we use the notations #*,£* instead of q±, ±b±. Because the simple poles
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 of Z(s) are located at the qk's with residues d(a+)bk, between Re(^) = -a and
 Re(s) = 0, we have

 1 r-a-ioo 1 p-ioo
 (52) - / h(s)Z(s)ds = - / h(X)Z(X)dX

 + £ d(a+)bkh(qk).
 -a<Re(qk)<0

 The simple poles at - q^ of Z{ - s) between Re(s) = a and Re(s) = 0 give rise to
 the equality

 1 ra+ioo 1 rioo

 (53) ^-. / h(s)(Z(s) -Z(- s))ds = - / h(\)(Z(X) -Z(- X))dX
 tKl Ja-ico L~Kl J-ioo

 + J2 d(frjbkh{ - qk).
 0<Re(-qk)<a

 By (51), (52) and (53), we have

 (54) 2 TmjhdXj) = 2^-. r°°h(X)(Z(X) + ^-<!>{X))dX

 1 rio°
 +- / h(\)(Z(X) -Z(-\) + rf(cr+)O(A)) dX.

 27TI J-ioo

 If we change variables A - > /A, we see that the first term of the right side in (54)

 is equal to two times of

 (55)

 2n J-oo 7. hyperbolic

 + di^f°°h(iXmX)dX 4tt J-oo

 = [ E /(CrVfrr1 JX7)"1 (x^K)-X<r_K)) ^- /°° Ad-Ay-'^^rfA
 \y: hyperbolic

 4?r y_oo y
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 By (54), (55) and the Selberg trace formula applied to h(iX)9 we have

 1 rio°
 - 1 / h(X)R(X) dX = 0
 2ni J-ioo

 for any odd holomorphic h(s) satisfying suitable growth conditions. Since R(s) is
 an entire function, this implies that R(s) = 0 over C. Hence we have the equality

 jslog(ZoH(n + s)Z°H(n-s)) = -d(a+)Q>(s)

 for any s G C Finally, recalling the equalities

 O(s) = j(logdttC+(s) -logdet C-(s)\

 r)(V) = -. log Z°H(n\
 7TI

 we get the following theorem.

 Theorem 7.4. We have

 Remark 7.5. In the above equality, Z^(n + ^)Z^(n - 5) has zeros at q+, -q+
 of orders d(a+)b+ for Re(#+) < 0 and poles at q-,-q- of orders d(a+)b-
 for Re(#_) < 0. These zeros and poles coincide with the zeros and poles of
 /detC+(j)C-(0K-<fl<7+)
 ^detC_(5)C+(0)^

 8. Cusp contributions for regularized determinants and functional equa-
 tions. In this section, we compute the unipotent factor in the relation between
 the regularized determinant and the Selberg zeta function of even type. We also
 derive the functional equation for the regularized determinant and the Selberg
 zeta function of even type where the unipotent factor plays a nontrivial role.
 This equation is the even type counterpart of the functional equation for the eta
 invariant and the Selberg zeta function of odd type proved in Section 7.

 We define the zeta function with the factor e~ts2 for a positive real number s
 by

 1 /*OO ( ^ \

 Cv>(z,s) := -i- T(z)h 1 / /*OO ?-' Tr le""2 ( - 5>-'^«M ^ \ e^dt. T(z)h V U )

 Note that CxtffoO) = C,V2{z) if the kernel of V2 is trivial. We proved that C,vi(z)
 is regular at z = 0 in Section 6. Due to the factor s2, the continuous spectrum
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 of V2 + s2 has minimum s2 and the large time part of the zeta function C<p2(z,s)
 does not produce any poles. Therefore C,V2(z,s) is regular at z = 0. We define the
 regularized determinant of V2 + s2 by

 Det(P2,5):=exp(-Cp2(0,5))

 for a positive real number s. Now we observe that Cd2(0,.s) = 0 by the results of
 Section 6. Then we have

 i /*OO ^

 T i C*fc*) = / /*OO ^TT(e-^-J2e-^^)e-ts2dt .

 Recall that

 (56) Trfe-'^-fX'^

 = Te~tXl - ^ /°° e-tx2ti(Cr(a+9-i\)Cfr(a+J\)) dX

 = IT(Ket) + HY{Ket) + UT{Ket),

 and put

 /(z,^) := r?-xIT{Ket)e-ts2dU
 Jo

 roo 2

 H(z,s) := / ?-xHT(Ket)e-ts 2 dt,
 Jo

 f°° i 2

 C/(z,5) := Jo / f°° ?-xUT(Ket)e-ts i 2 dt. Jo

 Then we have

 (57) ~ \ogDet(V2,s) = I(l,s) + H(l,s) + U(l,s).
 2s as

 Now we want to find Zj(s),ZeH(s),Zu(s) such that

 I{\,s)=jsjs\ogZ,{s), H(l,s) = ±-sjslogZeH(s), U(l,s) = ~\ogZu(s).

 First,we recall that the Selberg zeta function of even type,

 (58)

 ZeH(s) :=exp l-Y, E J^r1 IdetCAcK^m^"1 -iUT'x^h^'^^ )
 \ <?± 7: hyperbolic /
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 is defined for Re(^) » 0 and we will show that this has a meromorphic extension

 over C. We use (9) and elementary equality /0°° -4-j exp ( - (j£ +ts2))dt = ^e~rs
 to see

 (59) H(hs) = l^logZ&fr + n).
 It follows from Corollary 4.3 that f/(z, s1) is the Mellin transform with factor

 e~ts of the following terms

 where Pi/(A) is an even polynomial of degree (2n - 4). We deal with the term

 %l)( ± i A + \) using the Cauchy integral formula

 ■5£*b*M*-s*H)-
 For the part /V(A) in (60), we have

 --log 2s ds exp \Jo / Pu(i\) d\)=- ) 2tt Jo e~ts J-oo / ^"/A PV(X) dX dt 2s ds \Jo ) 2tt Jo J-oo

 by Lemma 3 in [7]. We define

 Zc(j) := r [s + - J exp ^2 jf Pu(iX) dXJ .

 Then this satisfies

 (61) U(l9s) = ~logZu(s).

 For /(z, ^), we can treat this as for Pu(X) since p(cr+, A) = p(cr_, A) is an even
 polynomial of A. Hence, we can see

 (62) Zi(s) := exp (2 j* P/(i A) dx\

 where P/(A) = 27rVol(r\G)p(a+, A). By (57), (59), (61) and (62), we have the
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 following theorem

 Theorem 8.1. The following equality holds for any s G C,

 (63) Dtt(V2,s) = CZeH(s + n)r ls+-\ exp f 2 / P7(/A>f Pu(iX)dX\

 where C is a constant and P/(A) = 27rVol(r\G)/?(a+, A).

 Proof A priori, the equality (63) holds for a real number s » 0 since ZeH(s+ri)
 is defined only for Re(s) » 0. But the right side of (63) gives the meromorphic
 extension over C by Proposition 8.3, and this also gives the meromorphic exten-
 sion of the left side of (63) over C. □

 Remark 8.2. Let us remark that Det(£>2,s) ^ Det(2>2, -s) as a meromorphic
 function over C. This is because the equality (63) holds for a real number s > 0

 a priori and the meromorphic extension of Det(D2,s) is given by the right side
 of (63), which does not satisfy this property.

 Now let us show that ZeH(s) has the meromorphic extension over C. We
 consider an even smooth function g(\u\) where g(u) is the given function in
 Section 7. We set

 ft(*±,A)= t°° g(\u\)e-sKiXudu
 J-oo

 for a complex parameter s. Then integration by parts gives

 (64) Hs(a±, A) = -J- - /°° g'(u)e-^udu + -i- S + IA JO f° g'(u)e-^udu. S - IA JO S + IA JO

 Let us apply the Selberg trace formula to the one parameter family of functions
 fs on G with Rt(s) » 0, such that fs(a±9 iX) = Hs(<r±, A), /,(a, iX) = 0ifa^a±.
 Then we get

 (65) Y, "*(<?+> xl>+ E Hs(°-^i>

 " ^ r° #>+>A) tr(Cr(a+,-/A)C^(a+,/A)) </A

 7: hyperbolic

 -^£>-*>(*K)+*(-tt+5))*
 + ^- /°° ft(<r+, A)(P/(A) + Pt/(A)) rfA.
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 Let us recall the equality

 js logZeH(s + n) = Yl KC^j^r'Dijy1 (x^K) + Xa_K)) e"5'^,
 7: hyperbolic

 and now we investigate the other terms in (65) to get the meromorphic extension

 of jj logZ#(s + n) over C and to determine its poles.

 Discrete eigenvalue term. Using (64) as before, we can see that Hs(a±, Ay)
 has a meromorphic extension over C and has the simple poles at iXj and -iXj
 for Xj e cr* with the residue m, where m, is the multiplicity of A/.

 Scattering term. Now we consider the scattering term

 d(c ^ f00

 - -^ d(c ^ / f00 Hs(*+, X) tr(Cr(<7+, -iX)Cfr(a+9 1 A)) dA.

 As in the previous case, we can show that the function

 ¥(z) := tr (^Cr(a+, -z)^Cr(a+,z))

 has the following form over C:

 for some constant p. Here the sum is taken over the set of poles of det Cp(cr+,z).
 We repeat the method in Section 7 to prove that the scattering term has a mero-
 morphic extension over C and has poles at q^ for Re(^) < 0 with residues
 d(a+)bk. As before bk denotes the order of the pole of det CH<t+,z) at q^

 Identity and Unipotent term. It follows from proposition 3.9 in [8] that

 ^- Z7T r Hs(a+, A)(P/(A) + Pu(X)) dX = 0. Z7T J-00

 We now turn our attention to the other unipotent terms. As in Proposition 3.7 of
 [8], we use the Cauchy integral formula to get

 ^^ £^ ft(<7+, A) (V (iA + 1) + 1> (-/A + 5) ) <*A = 2/^(a+)^ (j + ^

 for Re(s) » 0 and the right side gives us the meromorphic extension over C of
 the left side.
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 Considering the equality (65) and the above analysis of other terms, we
 conclude:

 Proposition 8.3. The Selberg zeta function of even type ZeH(s) has a meromor-
 phic extension over C.

 Remark 8.4. The zeros of ZeH(s + n)T(s + I)-2«^+) are located at /Ay, -/Ay
 for Ay G a**, and at qk for Re(^) < 0 and their orders are my, d{a+)bk.

 We now prove the functional equation for Det(P2,s) and ZeH(s). First let us
 define

 Z{s) := - logZeH(s + n) - 2nd(a+)ip (s + - ) as \ 2)

 and we can see that

 R(s) := Z(s) + Z(-s) + dia+^is)

 is an even entire function of s. Now let h(s) be an even function which decreases

 sufficiently rapidly as Im(s) - > oo in the strip { s G C | \Rt(s)\ <« + e, e>0}.
 We follow Section 7 and consider the contour integral

 Ct-=^-. 2th I h(s)Z(s)ds 2th Jlt

 where Lj is the rectangle with the corners a + 1'7\ a - iT, -a + *T, -a - iT with
 n < a < n + c. Then we have

 i ra+ioo 2 r-a-ioo
 lim CT = - h{s\Z{s) + Z(-s))ds+- h(s)Z(s) ds.
 T-+oo 2717 Ja-ioo ^717 J -a+ioo

 The Cauchy integral theorem gives

 (66) lim CT = 2 ]T my/z(/Ay) + ]T d(a+)bkh(qk).
 T^°° Xj -a<Re(qk)<0

 The simple poles at qk of Z(^) in the strip between Re(s) = -a and Re(s) = 0
 have residues d(a+)bk and give the equality

 (67) J_ 27TI / A(5)Z(5)^= - - / h(\)Z(\)d\+ J2 d(a+)bkh(qk). 27TI J -a+ioo 27TlJioo -a<Re(qk)<0

 Similarly, the simple poles at -qk of Z( - s) in a strip between Re(s) = a and
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 Re(s) = 0 have residues -d(a+)bk and provide us with

 1 /»a+/oo

 (68) - / h(s)(Z(s)+Z(-s))ds
 l rioc *-^
 = 7T-. h(\)(Z(X)+Z(-X))d\+ *-^ £ -d(<r+ybkh(-qk).
 Zm J-i0° 0<Re(^)<a

 We use (66), (67) and (68) to obtain

 1 r-ioo d((T }

 (69) 2 V mjhdXj) = 2- / h(X)(Z(X) + -^ d((T } V(A)) dX
 xj

 +^~ / h(X){Z(X) + Z( - X) + </(<7+)¥(A)) rfA.
 2?r/ J-ioo

 Replacing A by i'A in the first term of the right side of the equality (69), we see
 that this term is equal to

 (70) 2 ]T KCjWrr)-1!*-?)-1 ^(^)+Xa_(m7)) -!- rh{iX)e-iXl^dX
 7: hyperbolic

 - 2-!- /°° h(iX)(2Kd(a+)ip(iX + ^)) dX+2^^- f°° h(iXy¥(i\)dX.
 27TJ-OO 2 4?T 7_oo

 By (69), (70) and the Selberg trace formula applied to A(iA), we have

 1 r°°
 - : / r°° h(X)(R(X) + 4P/( - i'A) + 4PV( - iX)) dX = 0
 2ni J-ioo

 for any even holomorphic h(s) satisfying suitable growth conditions. Since

 R(s) + 4P/( - is) + 4PV( - is) = R(s) + 4P/(w) + 4P(/(w)

 is an entire function, we have

 Z(s) + Z(-s) + 4P/(w) + 4P|/(w) = -(/(j+ms)

 over C. Now we get the equality

 - log \ZeH(n + s)Y [s + - J 1 + 4P/(w) + 4Pv(is)

 d ( ( l \ -2f«/(o-+)\

 = -iog^(w-,)r(-, d ( ( + -) l \ j

 - «/(<7+)-rlog(detCr(0+,*)),
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 ETA INVARIANT, REGULARIZED DETERMINANT 533

 which leads to the formula

 (71) ZeH(n + s)T [s + - J exp (4 j P7(iA) + Pv{iX) dXJ
 / j\-2/a/(«y+)

 = (det Cr(a+, *))-**> Z£(* - s)T \-s + - J

 This equality holds a pnon up to constant c. As in the proof of Lemma 4.3 in
 [8], we multiply s~2m° to both sides of (71) where mo is the multiplicity of the
 zero eigenvalue of V. Doing this removes the spectral zero of ZeH(n ± s) at s = 0.
 If we compare the remaining parts at s = 0, we can see that the constant c equals
 1. From (63), we have

 Det(P2, sf = C2 Z^(s + nfT I s + - J exp f 4 / P7(/A) + Pu(i\) d\) .

 Finally, we combine (71) and this equality to get

 Theorem 8.5. For any s e C, we have

 (72) Det(P2, s)2 = C2 (det Cr(<r+, 5))-J(<7+) ZeH(n + 5)Z^(n - 5)

 Remark 8.6. The right side of (72) has the zeros at /A,, -/A, of order 2m,

 for A, G cj^, and at qk of order 2d(a+)bk for Re(^) < 0. These are the zeros of
 Det(£>2,s)2 as we expected.

 Mathematisches Instttut, Universitat Bonn, Beringstrabe 1, D-53115 Bonn,
 Germany

 E-mail: jpark@math.uni-bonn.de
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